martes, 14 de junio de 2011

4Be: 1s2 2s2
12Mg: 1s2 2s2 2p6 3s2
20Ca:1s2 2s2 2p6 3s2 3p6 4s2
10Ne: 1s2 2s2 2p6
2He:1s2
1º verificar el numero atómico
2ºdespues de aver verificado el numero atómico tienes que ir sumando los electrones.
3º si no coincide el valor se resta lo que se necesita para llegar a el valor

SORENSE


Søren Peter Lauritz Sørensen (9 de enero de 1868 - 12 de febrero de 1939), nacido en Havrebjerg (Dinamarca), fue un químico danés. Su gran aportación es la de introducir el concepto de pH.

Desde 1901 hasta 1938, era el jefe del prestigioso Laboratorio Carlsberg, de Copenhague. Trabajando en el Laboratorio Carlsberg estudió el efecto de la concentración de los iones sobre las proteínas, y por qué el ión H+ era particularmente importante. Fue el introductor de la escala de pH como un modo simple de expresión de ello en 1909. En el artículo en el cual él introdujo la escala (usando el pH de notación), describió dos nuevos métodos para medir la acidez. El primer método estaba basado en electrodos, mientras el segundo implicado la comparación de los colores de muestras y un juego preseleccionado de indicadores. El se encargó de obtener la formula para poder manejar números enteros en el PH. 

LINUS PAULIN

 Linus Carl Pauling (Portland, 28 de febrero de 1901 - 19 de agosto de 1994) fue unquímico estadounidense y una de las mentes más preclaras del siglo XX. Él mismo se llamaba cristalógrafo, biólogo molecular e investigador médico. Fue uno de los primerosquímicos cuánticos, y recibió el Premio Nobel de Química en 1954, por su trabajo en el que describía la naturaleza de los enlaces químicos.

Pauling es una de las pocas personas que han recibido el Premio Nobel en más de una ocasión,1 pues también recibió el Premio Nobel de la Paz en 1962, por su campaña contra las pruebas nucleares terrestres.2 Pauling hizo contribuciones importantes a la definición de la estructura de los cristales y proteínas, y fue uno de los fundadores de labiología molecular. Es reconocido como un científico muy versátil, debido a sus contribuciones en diversos campos, incluyendo la química cuántica, química inorgánicay orgánica, metalurgia, inmunología, anestesiología, psicología, decaimiento radiactivo y otros. Adicionalmente, Pauling abogó por el consumo de grandes dosis de vitamina C, algo que ahora se considera fuera de la ortodoxia médica.


En 1939, Pauling publicó su obra más importante, The Nature of the Chemical Bond (‘la naturaleza del enlace químico’), en la cual desarrolló el concepto de hibridación de losorbitales atómicos. Tanto sus trabajos sobre los sustitutos del plasma sanguíneo (con Harvey Itano), durante la Segunda Guerra Mundial, como sus investigaciones en laanemia falciforme (o drepanocitosis, que calificó con el revolucionario término de «enfermedad molecular»), influyeron en gran medida a la investigación en biología de la segunda mitad del siglo XX. Notoriamente, Pauling descubrió la estructura de la hélice alfa (la forma de enrollamiento secundario de las proteínas), lo que lo llevó a acercarse al descubrimiento de la «doble hélice» del ADN (ácido desoxirribonucleico); poco antes de que James Dewey Watson (1928–) y Francis Crick (1916-2004) hicieran el descubrimiento en 1953. De hecho, propuso una estructura en forma de triple hélice, la cual, estudiando el ADN por radiocristalografía habría podido llevar a la elaboración de un modelo en forma de doble hélice.

martes, 7 de junio de 2011

ARRHENIUS

(Uppsala, 1859 - Estocolmo, 1927) Físico y químico sueco. Perteneciente a una familia de granjeros, su padre fue administrador y agrimensor de una explotación agrícola.

Cursó sus estudios en la Universidad de Uppsala, donde se doctoró en 1884 con una tesis que versaba sobre la conducción eléctrica de las disoluciones electrolíticas, donde expuso el germen de su teoría según la cual las moléculas de los electrólitos se disocian en dos o más iones, y que la fuerza de un ácido o una base está en relación directa con su capacidad de disociación.
sta teoría fue fuertemente criticada por sus profesores y compañeros, quienes concedieron a su trabajo la mínima calificación posible. Sin embargo, los grandes popes de la química extranjera, como Ostwald, Boltzmann y van't Hoff apreciaron justamente su teoría, y le ofrecieron su apoyo y algún que otro contrato, con lo que su prestigio fue creciendo en su propio país. La elaboración total de su teoría le supuso cinco años de estudios, durante los cuales sus compañeros fueron aceptando los resultados.

Fue profesor de física en la Universidad de Uppsala (1884), en el Real Instituto de Tecnología de Estocolmo (1891), rector de la universidad de Estocolmo y director del Instituto Nobel de fisicoquímica (1905), cargo este último creado especialmente para él.

AVOGRADO

Químico y físico italiano. Nació el 9 de junio de 1776 en Turín, Italia y murió el 9 de julio de 1856.
En 1792 se graduó como doctor en derecho canónico, pero no ejerció. En vez de ello, mostró verdadera pasión por la física y la química, y una gran destreza para las matemáticas. 
Recapacitando sobre el descubrimiento de Charles (publicado por Gay -Lussac) de que todos los gases se dilatan en la misma proporción con la temperatura decidió que esto debía implicar que cualquier gas a una temperatura dada debía contener el mismo número de partículas por unidad de volumen. Avogadro tuvo la precaución de especificar que las partículas no tenían por qué ser átomos individuales sino que podían ser combinaciones de átomos (lo que hoy llamamos moléculas).

Con esta consideración pudo explicar con facilidad la ley de la combinación de volúmenes que había sido anunciada por Gay-Lussac y, basándose en ella, dedujo que el oxígeno era 16 veces más pesado que el hidrógeno y no ocho como defendía Dalton en aquella época.

Enunció la llamada hipótesis de Avogadro: iguales volúmenes de gases distintos contienen el mismo número de moléculas, si ambos se encuentran a igual temperatura y presión.

Ese número, equivalente a 6,022· 1023, es constante, según publicó en 1811. Como ha ocurrido muchas veces a lo largo de la historia las propuestas de Avogadro no fueron tomadas en cuenta, es más, Dalton, Berzelius y otros científicos de la época despreciaron la validez de su descubrimiento y la comunidad científica no aceptó de inmediato las conclusiones de Avogadro por tratarse de un descubrimiento basado en gran medida en métodos empíricos y válido solamente para los gases reales sometidos a altas temperaturas pero a baja presión.

Sin embargo, la ley de Avogadro permite explicar por qué los gases se combinan en proporciones simples.

Fue su paisano Cannizaro quién, 50 años más tarde, se puso a su favor y la hipótesis de Avogadro empezó a ser aceptada. A partir de entonces empezó a hablarse del número Avogadro.

MENDELIEV


Tobolsk, actual Rusia, 1834-San Peterburgo, 1907) Químico ruso. Su familia, de la que era el menor de diecisiete hermanos, se vio obligada a emigrar de Siberia a Rusia a causa de la ceguera del padre y de la pérdida del negocio familiar a raíz de un incendio. Su origen siberiano le cerró las puertas de las universidades de Moscú y San Petersburgo, por lo que se formó en el Instituto Pedagógico de esta última ciudad.Más tarde se trasladó a Alemania, para ampliar estudios en Heidelberg, donde conoció a los químicos más destacados de la época. A su regreso a Rusia fue nombrado profesor del Instituto Tecnológico de San Petersburgo (1864) y profesor de la universidad (1867), cargo que se vería forzado a abandonar en 1890 por motivos políticos, si bien se le concedió la dirección de la Oficina de Pesos y Medidas (1893).


Entre sus trabajos destacan los estudios acerca de la expansión térmica de los líquidos, el descubrimiento del punto crítico, el estudio de las desviaciones de los gases reales respecto de lo enunciado en la ley de Boyle-Mariotte y una formulación más exacta de la ecuación de estado. En el campo práctico destacan sus grandes contribuciones a las industrias de la sosa y el petróleo de Rusia.
Con todo, su principal logro investigador fue el establecimiento del llamado sistema periódico de los elementos químicos, o tabla periódica, gracias al cual culminó una clasificación definitiva de los citados elementos (1869) y abrió el paso a los grandes avances experimentados por la química en el siglo XX.

Aunque su sistema de clasificación no era el primero que se basaba en propiedades de los elementos químicos, como su valencia, sí incorporaba notables mejoras, como la combinación de los pesos atómicos y las semejanzas entre elementos, o el hecho de reservar espacios en blanco correspondientes a elementos aún no descubiertos como el eka-aluminio o galio (descubierto por Boisbaudran, en 1875), el eka-boro o escandio (Nilson, 1879) y el eka-silicio o germanio (Winkler, 1886).

ERWIN SCHRODINGER

(Viena, 1887-id., 1961) Físico austriaco. Compartió el Premio Nobel de Física del año 1933 con Paul Dirac por su contribución al desarrollo de la mecánica cuántica. Ingresó en 1906 en la Universidad de Viena, en cuyo claustro permaneció, con breves interrupciones, hasta 1920. Sirvió a su patria durante la Primera Guerra Mundial, y luego, en 1921, se trasladó a Zurich, donde residió los seis años siguientes.



En 1926 publicó una serie de artículos que sentaron las bases de la moderna mecánica cuántica ondulatoria, y en los cuales transcribió en derivadas parciales, su célebre ecuación diferencial, que relaciona la energía asociada a una partícula microscópica con la función de onda descrita por dicha partícula. Dedujo este resultado tras adoptar la hipótesis de De Broglie, enunciada en 1924, según la cual la materia y las partículas microscópicas, éstas en especial, son de naturaleza dual y se comportan a la vez como onda y como cuerpo.


Atendiendo a estas circunstancias, la ecuación de Schrödinger arroja como resultado funciones de onda, relacionadas con la probabilidad de que se dé un determinado suceso físico, tal como puede ser una posición específica de un electrón en su órbita alrededor del núcleo.

WEMER HEISENBERG


Werner Karl Heisenberg (WurzburgoAlemania5 de diciembre de 1901 – Múnich1 de febrero de 1976) fue un físico alemán. Es conocido sobre todo por formular el principio de incertidumbre, una contribución fundamental al desarrollo de la teoría cuántica. Este principio afirma que es imposible medir simultáneamente de forma precisa la posición y el momento lineal de una partícula. Heisenberg fue galardonado con el Premio Nobel de Física en 1932. El principio de incertidumbre ejerció una profunda influencia en la física y en la filosofía del siglo XX.



Estuvo a cargo de la investigación científica del proyecto de la bomba atómica alemana durante la II Guerra Mundial. Bajo su dirección se intentó construir un reactor nuclear en el que la reacción en cadena se llevara a cabo con tanta rapidez que produjera una explosión, pero estos intentos no alcanzaron éxito. Estuvo preso en Inglaterra después de la guerra. Murió en 1976.

LUIS BROGILE

(Louis-Victor Broglie, príncipe de Broglie; Dieppe, Francia, 1892-París, 1987) Físico francés. Miembro de una familia perteneciente a la más distinguida nobleza de Francia, sus parientes destacaron en un amplio rango de actividades, como pueden ser la política, la diplomacia o la carrera militar. Su hermano Maurice, de quien De Broglie heredó el título de duque tras su fallecimiento, destacó así mismo en el campo de la física experimental concerniente al estudio del átomo.

Por su parte, Louis-Victor centró su atención en la física teórica, en particular en aquellos aspectos a los que se refirió con el nombre de «misterios» de la física atómica, o sea, a problemas conceptuales no resueltos en aquel entonces por la ciencia. Estudió física teórica en La Sorbona de París, y, persuadido por su familia, historia de Francia. Finalmente, se doctoró en física en esta misma universidad.

En su tesis doctoral, habiendo entrado previamente en contacto con la labor de científicos de la talla de Einstein o Planck, abordó directamente el tema de la naturaleza de las partículas subatómicas, en lo que se vino a constituir en teoría de la dualidad onda-corpúsculo, según la cual las partículas microscópicas, como pueden ser los electrones, presentan una doble naturaleza, pues, además de un anteriormente identificado comportamiento ondulatorio, al desplazarse a grandes velocidades se comportan así mismo como partículas materiales, de masa característica, denominada masa relativista, lógicamente muy pequeña y debida a la elevada velocidad.

NIELS BOHR

Niels Henrick David Bohr; Copenhague, 1885 - 1962) Físico danés. Considerado como una de las figuras más deslumbrantes de la Física contemporánea y, por sus aportaciones teóricas y sus trabajos prácticos, como uno de los padres de la bomba atómica, fue galardonado en 1922 con el Premio Nobel de Física, "por su investigación acerca de la estructura de los átomos y la radiación que emana de ellos".

Cursó estudios superiores de Física en la Universidad de Copenhague, donde obtuvo el grado de doctor en 1911. Tras haberse revelado como una firme promesa en el campo de la Física Nuclear, pasó a Inglaterra para ampliar sus conocimientos en el prestigioso Cavendish Laboratory de la Universidad de Cambridge, bajo la tutela de sir Joseph John Thomson (1856-1940), químico británico distinguido con el Premio Nobel en 1906 por sus estudios acerca del paso de la electricidad a través del interior de los gases, que le habían permitido descubrir la partícula bautizada luego por Stoney (1826-1911) comoelectrón.


El átomo de Bohr
Las primeras aportaciones relevantes de Bohr a la Física contemporánea tuvieron lugar en 1913, cuando, para afrontar los problemas con que había topado su maestro y amigo Rutherford, afirmó que los movimientos internos que tienen lugar en el átomo están regidos por leyes particulares, ajenas a las de la Física tradicional. Al hilo de esta afirmación, Bohr observó también que los electrones, cuando se hallan en ciertos estados estacionarios, dejan de irradiar energía.

En realidad, Rutherford había vislumbrado un átomo de hidrógeno conformado por un protón (es decir, una carga positiva central) y un partícula negativa que giraría alrededor de dicho protón de un modo semejante al desplazamiento descrito por los planetas en sus órbitas en torno al sol. Pero esta teoría contravenía las leyes de la Física tradicional, puesto que, a tenor de lo conocido hasta entonces, una carga eléctrica en movimiento tenía que irradiar energía, y, por lo tanto, el átomo no podría ser estable.

DALTON

Químico y físico británico. En su infancia ayudaba con su hermano a su padre en el trabajo del campo y de la pequeña tienda familiar donde tejían vestidos, mientras que su hermana Mary ayudaba a su madre en las tareas de la casa y vendía papel, tinta y plumas.

Aunque su situación económica era bastante humilde, recibieron cierta educación en la escuela cuáquera más cercana, a diferencia de otros niños de la misma condición. El maestro de la escuela cuáquera de Pardshow Hall proporcionó a Jonh Dalton una buena base y le transmitió afán por la búsqueda incansable de nuevos conocimientos. Un cuáquero rico, Elihu Robinson, se convirtió en su mentor y en otra fuente de estimulación hacia las matemáticas y las ciencias (especialmente la meteorología).


Con sólo 12 años de edad Jonh Dalton abrió una escuela en su localidad natal, Eaglesfield.

En 1781 Jonh Dalton se unió a su hermano como asistente de George Bewley en su escuela de Kendall. Cuando se retiró George, su hermano y él abrieron su propia escuela, donde ofrecían clases de inglés, latín, griego y francés, además de 21 temas relacionados con las matemáticas y las ciencias.

John Gough, el hijo ciego de un rico comerciante, se hizo amigo de John Dalton y su mentor. Le enseñó lenguas, matemáticas y óptica, además de compartir con Dalton su biblioteca. El interés de Dalton se extendió hacia la neumática, la astronomía y la geografía, y en 1787 comenzó a obtener ingresos extraordinarios impartiendo conferencias.

A la edad de 26 años (1792), Dalton descubrió que ni él ni su hermano eran capaces de distinguir los colores. Le regaló a su madre unas medias (que él creía azules)

En 1793, se trasladó a Manchester como tutor en el Nuevo Colegio fundado por los presbiterianos. Inmediatamente se inscribió en la Biblioteca de Manchester y en la Sociedad Filosófica (que llegaría a presidir). En ese mismo año Dalton publicó su primer libro Meteorological Observations and Essays, donde defendía la tesis de que el aire es una mezcla física de gases en lugar de una combinación química. Como tutor de química conocía la obra de Lavoisier.

En 1802 estableció su ley de las presiones parciales (Ley de Dalton). Cuando dos fluidos elásticos A y B se mezclan, no hay repulsión entre una partícula de A y otra de B, pero sí entre una partícula de B y otra partícula de B.

En 1803, mientras trataba de explicar su ley de presiones parciales, comenzó a formular su mayor contribución a la ciencia: la teoría atómica. Se encontraba estudiando la reacción del óxido nítrico con oxígeno cuando descubrió que la reacción podía tener lugar con dos proporciones diferentes: a veces 1:1,7 y otras 1;3,4 (en peso). Ello llevó a Dalton a establecer la ley de las proporciones múltiples, que dice que los pesos de dos elementos siempre se combinan entre sí en proporciones de números enteros pequeños. En ese mismo año publicó su primera lista de pesos atómicos y símbolos.

TABLA PERIÓDICA


La tabla periódica de los elementosclasifica, organiza y distribuye los distintoselementos químicos, conforme a sus propiedades y características.

Suele atribuirse la tabla a Dmitri Mendeléyev, quien ordenó los elementos basándose en la variación manual de las propiedades químicas, si bien Julius Lothar Meyer, trabajando por separado, llevó a cabo un ordenamiento a partir de las propiedades físicas de los átomos. La forma actual es una versión modificada de la de Mendeléyev, fue diseñada por Alfred Werner.